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Abstract. In an iterative approach for solving linear systems with dense, ill-conditioned, sym-
metric positive definite (SPD) kernel matrices, both fast matrix-vector products and fast precondi-
tioning operations are required. Fast (linear-scaling) matrix-vector products are available by express-
ing the kernel matrix in an H2 representation or an equivalent fast multipole method representation.
This paper is concerned with preconditioning such matrices using the hierarchically semiseparable
(HSS) matrix representation. Previously, an algorithm was presented to construct an HSS approxi-
mation to an SPD kernel matrix that is guaranteed to be SPD. However, this algorithm has quadratic
cost and was only designed for recursive binary partitionings of the points defining the kernel matrix.
This paper presents a general algorithm for constructing an SPD HSS approximation. Importantly,
the algorithm uses the H2 representation of the SPD matrix to reduce its computational complexity
from quadratic to quasilinear. Numerical experiments illustrate how this SPD HSS approximation
performs as a preconditioner for solving linear systems arising from a range of kernel functions.

Key words. symmetric positive definite preconditioner, HSS matrix representation, H2 matrix
representation, kernel matrix

1. Introduction. Fast direct linear solvers exploit the hierarchical low-rank
structure of matrix blocks. This structure can be exploited in different ways (e.g., hier-
archical off-diagonal low-rank (HODLR) [1], hierarchical semiseparable (HSS) [6, 30],
recursive skeletonization [20], hierarchical interpolative factorization (HIF) [21], in-
verse fast multipole method (IFMM) [2, 8]) but, invariably, constructing these hierar-
chical low-rank representations is expensive, its cost being dominated by computing
accurate low-rank approximations of matrix blocks and the associated factorizations
based on these approximations. Usually, this construction step scales superlinearly
and is far more expensive than the subsequent solve step (which may include factor-
ization, e.g., ULV decomposition [30] for the HSS representation).

An alternative to fast direct solvers is to use iterative solvers and fast matrix-
vector multiplication provided by more general representations of the hierarchical
low-rank structure (e.g., H [14, 17], H2 [15, 16], the fast multipole method (FMM)
[12, 13], butterfly factorization [24]). These methods only require relatively cheap or
even trivial precomputation to construct the hierarchical low-rank representation, and
can scale linearly or quasilinearly overall. The main challenge here is slow convergence
of the iterative solve for ill-conditioned matrices.

The two approaches above can be combined by using fast direct solvers as precon-
ditioners for the iterative solvers and using fast matrix-vector multiplication. Referred
to as rank-structured preconditioners, the construction cost of the solvers is greatly
reduced due to the lower accuracy required of the low-rank approximations. For
symmetric positive definite (SPD) matrices, which are addressed in this paper, it is
important that the preconditioner is also SPD. Unfortunately, most rank-structured
preconditioners, if only focusing on matrix block approximation, are not able to guar-
antee that positive definiteness is preserved.
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Recently, a scaling-and-compression technique has been developed for both dense
and sparse SPD matrices to compress matrix blocks into low-rank form as part of the
construction of certain rank-structured preconditioners [5, 9, 29, 31, 32, 34]. The re-
sulting preconditioners can be much more effective than if this technique is not used.
It has also been found experimentally that preconditioners computed using this tech-
nique are more likely be positive definite. In some cases above, positive definiteness
can further be guaranteed when scaling-and-compression is used with the appropriate
construction algorithm, but the cost of constructing these SPD preconditioners is at
least quadratic for dense SPD matrices.

In this paper, we propose a quasilinear algorithm to efficiently construct an SPD
preconditioner in HSS form by accelerating the scaling-and-compression technique,
given an H2 representation of the dense SPD matrix.

The scaling-and-compression technique is illustrated in Figure 1.1 for compressing
off-diagonal blocks at one level in the construction process of an HSS representation.
The matrix A is partitioned into blocks and the compressed matrix Ã is produced.
In the scaling-and-compression technique, instead of directly compressing each off-
diagonal block, the block is scaled before compression. Each off-diagonal block Aij

is scaled as S−1
i AijS

−T
j , where Si and Sj are from an easily invertible symmetric

factorization (e.g., Cholesky factorization) of the diagonal blocks, Aii = SiS
T
i and

Ajj = SjS
T
j . The scaled off-diagonal blocks are then compressed into low rank form,

S−1
i AijS

−T
j ≈ UijV

T
ij . The final low-rank approximation is Aij ≈ SiUijV

T
ij S

T
j .

Fig. 1.1. Illustration of the scaling-and-compression technique for compressing off-diagonal
blocks at one level in HSS construction.

The scaling step, Aij → S−1
i AijS

−T
j , requires accessing all the matrix entries and

leads to quadratic computation cost. If using a fixed approximation rank, the com-
pression of all the scaled off-diagonal blocks, i.e., the step S−1

i AijS
−T
j → UijV

T
ij , using

general algebraic methods such as QR decomposition and SVD also takes quadratic
computation cost. Thus, both the scaling and compression operations in the scaling-
and-compression technique could lead to unfavorable, quadratic HSS construction
cost.

A key observation that we utilize in this paper is that if a block is already in low-
rank form, its scaling and compression can be efficiently computed (this is utilized
in Subsection 5.2.2). For example, for Aij = UV T with tall factors U and V , it is
sufficient to compute and compress the two products S−1

i U and S−1
j V . If a matrix is

expressed in the H2 representation, then the vast majority of its off-diagonal blocks
is already expressed in low-rank form. This reduces the cost of constructing an HSS
representation that uses the scaling-and-compression technique in the construction
process. The HSS representation generally requires more of its off-diagonal blocks to
be compressed into low-rank form than the H2 representation. However, the number
of additional blocks that need to be compressed in the HSS representation is relatively
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very small. If a fixed approximation rank is used, these considerations lead to the
quasilinear cost of the SPD HSS construction algorithm proposed in this paper. More
precisely, if a fixed rank r is used for all HSS block approximations, the new algorithm
has computation dominated by O(r logN) matrix-vector multiplications (using the
H2 representation) and thus scales as O(rN logN), where N is the number of matrix
rows. The scaling and compression of all blocks at one level of the new construction
algorithm can be performed in parallel.

There exist related ideas in the current literature. In particular, the construc-
tion of the HSS representation and of the butterfly factorization for a matrix can
be accelerated if a fast matrix-vector product operation is available for the matrix
[11, 25, 26, 28]. One application of these methods is to construct such representations
for products of matrices, where each matrix is expressed in an H or H2 representation,
for example. In a similar spirit, simple rank-structured representations can be post-
processed to construct more complicated ones, e.g., converting an H representation
into an H2 representation [4], by exploiting the efficiencies already afforded by the
existing H representation.

Outline. Previously, a quadratic-scaling algorithm for constructing an SPD HSS
approximation was presented [34]. The main concepts behind this algorithm are re-
viewed in Section 3, as the new algorithm of this paper uses the same ideas. The
earlier algorithm, however, can only construct HSS representations by recursively
partitioning the set of matrix rows (or columns) in binary fashion, leading to a binary
partition tree (see Background, Section 2). In Section 4, we generalize the earlier
algorithm to handle nonbinary partition trees. This is a necessary step for our new
algorithm because the SPD HSS representation will be derived from an H2 represen-
tation using the same partition tree, and the latter representation can use a nonbinary
partition tree. We note that this “generalized” SPD HSS construction algorithm still
scales quadratically. In Section 5, we propose the new algorithm that uses an H2

representation of an SPD matrix to accelerate the construction of its SPD HSS ap-
proximation, resulting in a quasilinear algorithm. This is the main contribution of
this paper. To demonstrate the computational cost of the new algorithm and the
utility of the SPD HSS approximation as a preconditioner, the results of numerical
experiments are shown in Section 6.

2. Background. For an N × N symmetric matrix A, we denote its row (or
column) index set as I = {1, 2, . . . , N}. In an applied problem, each index is associated
with some element of interest, e.g., a quadrature point, a feature vector, etc. With a
recursive partitioning of these elements of interest, the index set I is partitioned into
hierarchically enclosed subsets {Ii}i∈T , where T is a partition tree that characterizes
the recursive partitioning. For each node i ∈ T , Ii is a subset of I. If i has children
i1, i2, . . . , im, then Ii = Ii1 ∪· · ·∪Iim and Iia ∩Iib = ∅ for a 6= b. Often, T is chosen to
be a binary tree, a quadtree, or an octree associated with the spatial partitioning of the
elements of interest in 1-, 2-, or 3-dimensional space, respectively. For simplicity, we
assume T to be a perfect (fully populated in each level) m-ary tree. This assumption
can be lifted with minor modifications.

The following notation is used in this paper:
• For i, j ∈ T , Aij denotes the subblock of A with rows indexed by Ii and

columns indexed by Ij .
• The root level of T is called level L and the leaf level is called level 1. The

levels of the partition tree will be associated with levels in the hierarchical
structure of a matrix.
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• lvl(k) denotes the set of nodes in level k of T .
• For node i in level k, we define ic = lvl(k) \ {i}, and thus Aiic denotes the

off-diagonal block row of A consisting of all Aij with j ∈ ic.
• For each nonleaf node i, its children are denoted by i1, i2, . . . , im.

Low-rank approximation by projection. Given a matrix or matrix block
H ∈ Rn×s, a general approach for compressing H into rank-r form is to compute
a tall matrix V ∈ Rn×r with orthonormal columns whose column space, col(V ), is
close to the principal column space of H, i.e., the space spanned by the first r left
singular vectors of H. A rank-r approximation can then be written as H ≈ V V TH
where V V T projects each column of H onto col(V ). Such a basis matrix V can be
computed by SVD, QR decomposition, randomized methods, etc.

HSS representation. At each level k, an HSS construction algorithm for a
matrix A compresses all the off-diagonal blocks Aij with i 6= j ∈ lvl(k) into the
low-rank form

(2.1) Aij ≈ UiBijU
T
j ,

where basis matrix Ui is shared by all the off-diagonal blocks with rows indexed by
Ii, i.e., all blocks in Aiic , and where UT

j is similarly shared from the symmetry of A.
Assuming Ui has orthonormal columns, coefficient matrix Bij can be computed as
UT
i AijUj . Then the approximation (2.1) projects the columns and rows of Aij onto

the column spaces col(Ui) and col(Uj), respectively. Matrix Ui captures the principal
column space of Aiic (to compress Aiic) in a recursive way. If i has children i1, . . . , im,
then Ui has the nested form

(2.2) Ui =

[ Ui1

. . .
Uim

]
Ri

with transfer matrix Ri. An HSS representation consists of (1) dense diagonal blocks
Aii associated with leaf nodes and (2) low-rank representations (2.1) of off-diagonal
blocks Aij at various levels that are not contained in larger off-diagonal blocks. Such
a block Aij is associated with a pair of sibling nodes i and j, i.e., nodes i and j have
the same parent. Figure 2.1 shows an HSS representation for a binary partition tree.

Recursive HSS construction. Constructing an HSS representation starts from
the leaf level (level 1) to the level below the root (level L − 1) of T . At level 1, the

original matrix A(0) = A has all its off-diagonal blocks A
(0)
ij with i 6= j ∈ lvl(1) com-

pressed into the low-rank form (2.1) and all its diagonal blocks A
(0)
ii untouched. This

overall approximation to A(0) is denoted as A(1). Recursively, at each level k, A(k−1)

from level (k − 1) has its off-diagonal blocks A
(k−1)
ij with i 6= j ∈ lvl(k) compressed

and is overall approximated by A(k). Lastly, A(L−1) is the HSS representation of A.

Each A
(k)
ij with i 6= j ∈ lvl(k) gives a low-rank approximation of Aij but is

constructed indirectly by approximating A
(k−1)
ij and not the original Aij , i.e.,

Aij ≈ A(k−1)
ij ≈ A(k)

ij = UiU
T
i A

(k−1)
ij UjU

T
j , i 6= j ∈ lvl(k).

Similarly, basis matrix Ui with i ∈ lvl(k) is constructed indirectly by compressing

A
(k−1)
iic instead of Aiic . This helps enforce the nested form (2.2) of Ui.
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Fig. 2.1. Recursive construction of an HSS approximation with a binary partition tree with
L = 4 levels. The colored blocks at different levels are compressed into low-rank form, and A(3)

gives an HSS approximation of the original matrix A(0).

The recursive HSS construction can be summarized as follows. For levels k from
1 to L− 1,

(2.3) A(k) = diag({A(k−1)
ii }i∈lvl(k))

+ diag({UiU
T
i }i∈lvl(k))

[
A(k−1) − diag({A(k−1)

ii }i∈lvl(k))
]

diag({UiU
T
i }i∈lvl(k))

where the notation diag({Hi}i∈lvl(k)) denotes a block diagonal matrix consisting of
all blocks in {Hi}i∈lvl(k). This notation will be simplified as diag(Hi) with i ∈ lvl(k)
implied by the context. This recursive construction process is illustrated in Figure 2.1.

3. Review of SPD HSS construction concepts. In this section, we review
the results from Ref. [34] that provide the cornerstone for this paper. Specifically,
we first show how scaling-and-compression is used with the recursive HSS construc-
tion procedure to compress the off-diagonal blocks of A(k−1) to obtain A(k) for each
level k. We then explain how this algorithm guarantees that the constructed HSS
approximation A(L−1) of A is SPD.

3.1. Scaling-and-compression technique. Consider the HSS construction at
level k that approximates A(k−1) by A(k). Using the scaling-and-compression tech-
nique, first compute a symmetric factorization (e.g., Cholesky decomposition) of each

diagonal block A
(k−1)
ii with i ∈ lvl(k) as A

(k−1)
ii = SiS

T
i . Each off-diagonal block

A
(k−1)
ij with i 6= j ∈ lvl(k) is then scaled by S−1

i and S−Tj from its left and right,
respectively, as

(3.1) A
(k−1)
ij

scale−−−→ C
(k−1)
ij = S−1

i A
(k−1)
ij S−Tj .

This is equivalent to multiplying A(k−1) by diag(S−1
i ) and diag(S−Ti ) from left and

right respectively, making the diagonal blocks of A(k−1) be identity. Next, compress all

these scaled off-diagonal blocks C
(k−1)
ij . In this paper, we use the projection approach

for compression; see (2.3). Other approaches are possible, but may not be able to
guarantee that the scaling-and-compression technique helps give SPD approximations.
In the projection approach, compute a tall matrix Vi with orthonormal columns to

approximate C
(k−1)
iic by ViV

T
i C

(k−1)
iic and thus compress each C

(k−1)
ij as

C
(k−1)
ij

compress−−−−−−→ ViV
T
i C

(k−1)
ij VjV

T
j .
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Lastly, scale these compressed blocks back using Si and ST
j to obtain the final low-rank

approximation A
(k)
ij to A

(k−1)
ij as

A
(k−1)
ij ≈ A(k)

ij = Si(ViV
T
i C

(k−1)
ij VjV

T
j )ST

j

= SiVi(V
T
i S
−1
i A

(k−1)
ij S−Tj Vj)V

T
j S

T
j ,(3.2)

which we write as

(3.3) A
(k)
ij = UiBijU

T
j ,

where we have defined the basis matrix Ui = SiVi and the coefficient matrix Bij =

V T
i C

(k−1)
ij Vj = V T

i S
−1
i A

(k−1)
ij S−Tj Vj . Thus the same notation as before is used for

the basis matrix and the coefficient matrix, regardless of whether the scaling-and-
compression technique is used. With scaling-and-compression, we again require Ui to
satisfy the nested form (2.2). For clarity, it is worth comparing the definition (3.3)
with the approximation (2.1). Figure 3.1 illustrates the application of the scaling-and-
compression technique for compressing A(1) to obtain A(2) at level 2 for the example
of Figure 2.1.

Fig. 3.1. Illustration of the scaling-and-compression technique to compress off-diagonal blocks
of A(1) at level 2 to obtain A(2) for the example in Figure 2.1. Note that the scaling operations are
applied to all blocks, and the compression operations are only applied to off-diagonal blocks.

3.2. Positive definiteness of A(k). Given an SPD matrix A, to show that the
HSS approximation A(L−1) constructed above is SPD, it is sufficient to show that if
A(k−1) is SPD, then A(k) is also SPD. To begin, the low-rank approximation (3.2) to
an off-diagonal block can be written as

A
(k)
ij = UiWiA

(k−1)
ij WT

i U
T
i

where we have defined Wi = V T
i S
−1
i . Then, the overall approximation at level k is

A(k) = diag(A
(k−1)
ii ) + diag(UiWi)[A

(k−1) − diag(A
(k−1)
ii )]diag(UiWi)

T

= diag(UiWi)A
(k−1)diag(UiWi)

T + diag(A
(k−1)
ii − UiWiA

(k−1)
ii WT

i U
T
i )

= diag(UiWi)A
(k−1)diag(UiWi)

T + diag(Si(I − ViV T
i )ST

i )

which shows that A(k) is at least positive semi-definite. To show that A(k) is SPD,
given that A(k−1) is SPD, we prove that vTA(k)v > 0 for any nonzero vector v.
Assume vTA(k)v = 0. Since A(k−1) is SPD, we have

diag(UiWi)
T v = 0 and vT diag(Si(I − ViV T

i )ST
i )v = 0.
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Let vi denote the subvector of v indexed by Ii. The above two equations can be
further written as S−Ti ViV

T
i S

T
i vi = 0 and vTi Si(I − ViV T

i )ST
i vi = 0, for each node

i ∈ lvl(k). Plugging ViV
T
i S

T
i vi = 0 into the latter equation gives vTi SiS

T
i vi = 0 which

suggests vi = 0. Thus, A(k) is SPD.

4. Generalized SPD HSS construction. In the following discussion, we as-
sume a fixed rank r for the low-rank approximation of all the off-diagonal blocks in
HSS construction. The formal construction in the previous section involves computa-
tions with large matrix blocks and leads to O(N3) computation cost. Its implemen-
tation with reduced, O(N2r) computation proposed in Ref. [34] cannot be applied
to nonbinary partition trees. In this section, we generalize this quadratic SPD HSS
construction method to general partition trees and retain O(N2r) complexity. Sec-
tion 5 will then demonstrate how to exploit an SPD H2 representation to reduce the
computation cost of the generalized construction method to O(rN logN).

An HSS approximation has three components: (1) diagonal blocks Aii for each
leaf node i, (2) basis matrices Ui for each leaf node i and transfer matrices Ri for
each nonleaf node i, and (3) coefficient matrices Bij for each pair of siblings i and j.
Note that although only Bij matrices for siblings i and j are used in the final HSS
representation, all Bij matrices with any i 6= j ∈ lvl(k) are needed during the HSS
construction process. With fixed approximation rank r, the matrices Ui, Ri, and Bij

are of dimensions |Ii| × r, mr × r, and r × r, respectively.
For each level k from 1 to L − 1, the following calculations are needed, for i 6=

j ∈ lvl(k):

• Decomposition: A
(k−1)
ii = SiS

T
i .

• Scale: C
(k−1)
ij = S−1

i A
(k−1)
ij S−Tj .

• Compute: Vi to approximate C
(k−1)
iic by ViV

T
i C

(k−1)
iic .

• Compute: Bij = V T
i C

(k−1)
ij Vj .

• For leaf levels, compute: Ui = SiVi.
• For nonleaf levels, compute Ri by solving (2.2),

(4.1) Ri =

V
T
i1
S−1
i1

. . .

V T
im
S−1
im

SiVi .

At the leaf level (k = 1), all the matrices in the above calculations are small,
and the components of the HSS representation, Ui and Bij , can be computed directly

with the above formulas. At nonleaf levels, the matrices Si, C
(k−1)
ij , and Vi in the

calculations can be considered large, with dimension O(N) for levels near the root
of the partition tree. However, the HSS components actually needed at each nonleaf
level are the small r × r and mr × r matrices Bij and Ri.

In the following, we show that these large matrices Si, C
(k−1)
ij , and Vi at level k

can be represented using the matrices {Bij} and {Ri} previously computed in level
(k−1). Further, {Bij} and {Ri} at level k can be computed directly using {Bij} and
{Ri} from level (k − 1). Thus, all calculations involving large matrix blocks can be
avoided.
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Symmetric decomposition A
(k−1)
ii = SiS

T
i . For each nonleaf node i at level k with

children i1, . . . , im, the block A
(k−1)
ii can be first split as

A
(k−1)
ii =


A

(k−1)
i1i1

. . . A
(k−1)
i1im

...
. . .

...

A
(k−1)
imi1

. . . A
(k−1)
imim

 =

 Si1S
T
i1

. . . Ui1Bi1,imU
T
im

...
. . .

...
UimBim,i1U

T
i1

. . . SimS
T
im

 .
This matrix can then be decomposed as (using Uia = SiaVia)

(4.2) A
(k−1)
ii =

Si1

. . .

Sim

(I + ViBiiV
T
i

)Si1

. . .

Sim


T

with

Bii =


0 Bi1,i2 . . . Bi1,im

Bi2,i1 0 . . . Bi2,im
...

...
. . .

...
Bim,i1 Bim,i2 . . . 0

 , Vi =

Vi1 . . .

Vim

 .
We use bold typeface to denote concatenations of children blocks, e.g., Bii is made
up of children blocks Bia,ib from level (k − 1).

As can be verified, a symmetric factorization I + ViBiiV
T
i = S̄iS̄

T
i exists with

S̄i = I + Vi((I + Bii)
1/2 − I)VT

i(4.3)

S̄−1
i = I + Vi((I + Bii)

−1/2 − I)VT
i

which are derived from a formula in [3]. These are the key equations that we use to
generalize the SPD HSS construction method of Ref. [34] for binary partition trees to

nonbinary partition trees. The positive definiteness of A
(k−1)
ii guarantees the existence

of (I+Bii)
±1/2. Matrix Bii is of dimensionmr×mr and (I+Bii)

±1/2 can be computed

by the direct eigen-decomposition of Bii. A symmetric factorization A
(k−1)
ii = SiS

T
i

can be formally computed based on (4.2) and (4.3) with

(4.4) Si =

Si1

. . .

Sim

 S̄i.

Scaled off-diagonal blocks C
(k−1)
ij = S−1

i A
(k−1)
ij S−Tj . For nonleaf nodes i 6= j at

level k with children i1, . . . , im and j1, . . . , jm, the quantity A
(k−1)
ij can be written as

A
(k−1)
i1j1

. . . A
(k−1)
i1jm

...
. . .

...

A
(k−1)
imj1

. . . A
(k−1)
imjm

=

Ui1

. . .

Uim


Bi1j1 . . . Bi1jm

...
. . .

...
Bimj1 . . . Bimjm


Uj1

. . .

Ujm


T

where the middle matrix is denoted as Bij ∈ Rmr×mr. Noting its difference from Bij ,
this bold typeface Bij consists of children blocks Bia,jb in level (k − 1). Based on
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(4.3), (4.4), Ui = SiVi, and the above equation, the scaled block C
(k−1)
ij by definition

can be computed as

C
(k−1)
ij = S−1

i A
(k−1)
ij S−Tj = S̄−1

i ViBijV
T
j S̄
−T
j

= Vi(I + Bii)
−1/2Bij(I + Bjj)

−1/2VT
j .(4.5)

Calculation of Vi. Recall that we desire Vi such that col(Vi) approximates col(C
(k−1)
iic ).

Further, Vi must satisfy col(Vi) ⊂ col(C
(k−1)
iic ) in order to guarantee the nested form

of Ui in (2.2); see Ref. [34]. From (4.5), each scaled block C
(k−1)
ij has its column space

contained in col(Vi). Thus, Vi can be represented by

(4.6) Vi = ViV̄i =

Vi1 . . .

Vim

 V̄i,
where the small matrix V̄i ∈ Rmr×r is computed with orthonormal columns to min-

imize the error of the required approximation C
(k−1)
iic ≈ ViV

T
i C

(k−1)
iic . Noting that

all Via blocks have orthonormal columns and using (4.5) and (4.6), the minimization
problem can be converted as

(4.7) min
Vi

‖C(k−1)
iic − ViV T

i C
(k−1)
iic ‖F = min

V̄i

∥∥Eiic − V̄iV̄ T
i Eiic

∥∥
F
,

where Eiic is the horizontal concatenation of all blocks (I+Bii)
−1/2Bij(I+Bjj)

−1/2

with nodes j ∈ ic. We note that Eiic is a small matrix of dimension mr×(|lvl(k)|−1)r.
Thus, V̄i can be directly computed to capture the principal column space of Eiic . In
Subsection 5.2.1, we will discuss how to more efficiently compute V̄i.

Calculation of Bij = V T
i C

(k−1)
ij Vj. Based on the calculations of C

(k−1)
ij in (4.5)

and Vi in (4.6), Bij can be directly computed as

Bij =
(
V̄ T
i VT

i

)
Vi(I + Bii)

−1/2Bij(I + Bjj)
−1/2VT

j

(
Vj V̄j

)
= V̄ T

i (I + Bii)
−1/2Bij(I + Bjj)

−1/2V̄j(4.8)

where all matrices in the second equation are of small dimensions. In Subsection 5.2.2,
we will discuss how to reduce the number of matrices Bij that need to be computed.

Calculation of Ri. Based on the above calculation of Si in (4.4) and Vi in (4.6),
Ri defined by (4.1) can be directly computed as

Ri =

V
T
i1
S−1
i1

. . .

V T
im
S−1
im


Si1

. . .

Sim

 S̄i

Vi1 . . .

Vim

 V̄i
= (I + Bii)

1/2V̄i(4.9)

where, again, all matrices in the second equation are of small dimensions.
To summarize, the actual computations needed at level k include the calculation of

(I+Bii)
±1/2 in (4.3), V̄i in (4.7), Bij in (4.8), and Ri in (4.9). The pseudocode of this

generalized SPD HSS construction process based on scaling-and-compression is shown
in Algorithm 4.1. The overall computation and peak storage costs of Algorithm 4.1
are both O(N2r) and the constructed SPD HSS representation has O(Nr) storage
cost.
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Algorithm 4.1 Generalized SPD HSS construction

Input: HSS rank r, an SPD matrix A
Output: an SPD HSS approximation with {Aii}, {Bij}, {Ui}, {Ri}

At the leaf level
compute the Cholesky decomposition Aii = SiS

T
i , ∀i ∈ lvl(1)

compute the scaled off-diagonal block C
(0)
ij = S−1

i AijS
−T
j , ∀i 6= j ∈ lvl(1)

compute Vi ∈ R|Ii|×r satisfying

– Vi has orthonormal columns and col(Vi) ⊂ col(C
(0)
iic )

– Vi should minimize ‖C(0)
iic − ViV T

i C
(0)
iic ‖F

compute Bij = V T
i C

(0)
ij Vj , ∀i 6= j ∈ lvl(1)

set Ui = SiVi, ∀i ∈ lvl(1)
for k = 2, 3, . . . , L− 1 do

compute (I + Bii)
±1/2 via the eigen-decomposition of Bii, ∀i ∈ lvl(k)

compute (I + Bii)
−1/2Bij(I + Bjj)

−1/2, ∀i 6= j ∈ lvl(k)
assemble Eiic in (4.7) and compute V̄i satisfying

– V̄i has orthonormal columns and col(V̄i) ⊂ col(Eiic)
– V̄i should minimize ‖Eiic − V̄iV̄ T

i Eiic‖F
compute Bij = V̄ T

i (I + Bii)
−1/2Bij(I + Bjj)

−1/2V̄j , ∀i 6= j ∈ lvl(k)
set Ri = (I + Bii)

1/2V̄i, ∀i ∈ lvl(k)
end for

5. Accelerated SPD HSS construction with quasilinear computation.
The generalized SPD HSS construction algorithm of the previous section has quadratic
computation cost. In this section, we show how to reduce the cost to quasilinear if
we can utilize an existing H2 representation of the SPD matrix. Below, we first give
necessary background on H2 representations.

5.1. H2 representation. Like the HSS representation, the H2 representation
of a matrix A is based on a partition tree T and a hierarchical index set {Ii}i∈T .
For each node i at each level k of a partition tree, we define a node set Fi ⊂ lvl(k)
that contains all the nodes in level k that are in the “far field” of node i. More
precisely, if the indices are associated with points in space, Fi can be defined as the
set of nodes j ∈ lvl(k) such that the points associated with Ij are well separated from
the points associated with Ii. In particular, the HSS representation is a specific H2

representation with Fi = ic = lvl(k) \ {i}.
The node set Fi specifies which blocks will be compressed in theH2 representation

of A. At each level k, all blocks Aij with i ∈ lvl(k) and j ∈ Fi ⊂ lvl(k) are compressed
as

(5.1) Aij = UH
2

i BH
2

ij (UH
2

j )T

assuming that the H2 representation is exact. Here we use the superscript “H2” to
distinguish the corresponding components of H2 from those of HSS. Like for HSS,
the basis matrix UH

2

i is shared by all blocks Aij with j ∈ Fi and is computed to
capture the principal column space of AiFi

= [Aij ]j∈Fi
(corresponding to Aiic in

HSS). Further, UH
2

i satisfies the nested form (2.2) as well.
An H2 representation consists of (1) dense blocks Aij with j /∈ Fi at the leaf level

and (2) low-rank representations (5.1) of blocks Aij with j ∈ Fi at various levels that
are not contained in larger low-rank blocks. Such a low-rank block Aij is associated
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with i, j satisfying the condition j ∈ Fi but par(j) /∈ Fpar(i) (par(i) denotes the parent
of i). Figure 5.1 gives an illustration of an H2 matrix with a binary partition tree.

Fig. 5.1. Illustration of an H2 representation with a binary partition tree. The colored blocks
Aij at different levels satisfy j ∈ Fi and are compressed into low-rank form. For each node i, this
example defines Fi as the set of nodes in the same level that are not adjacent to i.

In practical problems, a proper definition of Fi can guarantee that all compressed
blocks AiFi

have numerical ranks bounded by a small constant independent of the
matrix size and thus the H2 representation can have linear-scaling matrix-vector mul-
tiplications. In the case of HSS, by defining Fi = ic, the maximum numerical rank of
all AiFi

blocks usually increases with the matrix size, and thus leads to superlinear
complexities in HSS construction and other HSS computations.

5.2. Quasilinear SPD HSS construction. In the generalized SPD HSS con-
struction algorithm of Section 4, the computation and storage costs are dominated by
those related to the coefficient matrices, Bij . In each level k, there are |lvl(k)|(|lvl(k)|−
1) such matrices. Each Bij is computed recursively from the leaf level to level k using
(4.8) and is ultimately computed from the original matrix block Aij .

Before proceeding, we define Φi, which will be used in this section. Observe that,
at level k,

Bij = V T
i S
−1
i A

(k−1)
ij S−Tj Vj , i 6= j ∈ lvl(k)

and that Bij is computed recursively by applying multiple matrices to Aij on its left
and right. To emphasize this relationship, we define Φi such that

Bij = ΦiAijΦ
T
j , i 6= j ∈ lvl(k)(5.2)

Φi =


V T
i S
−1
i i is a leaf node

V̄ T
i (I + Bii)

−1/2

[Φi1

. . .
Φim

]
i has children i1, . . . , im

,(5.3)

where this nested representation of Φi is derived from (4.8).
To compute the matrices Bij , the matrices Vi for leaf nodes i and V̄i for nonleaf

nodes i are needed. We discuss how Vi and V̄i are computed using a randomized
algorithm in Subsection 5.2.1. The matrix-vector products required in the randomized
algorithm are performed efficiently using an H2 representation of the SPD matrix that
we assume to be available.

To compute a Bij matrix at level k, the Bij matrices that are needed from lower
levels may already have a low-rank form in the H2 representation. Thus, the recursion
for computing Bij at level k can stop and does not need to proceed to the leaf level.
We discuss this in Subsection 5.2.2.
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5.2.1. Calculation of Vi and V̄i. In the generalized SPD HSS construction
algorithm (Algorithm 4.1), Vi and V̄i are computed as follows. At leaf nodes i, the

matrix Vi is computed to approximate C
(0)
iic by ViV

T
i C

(0)
iic with the constraint that Vi

has orthonormal columns and col(Vi) ⊂ col(C
(0)
iic ). At nonleaf nodes i, the matrix

V̄i is computed to approximate Eiic by V̄iV̄
T
i Eiic with the constraint that V̄i has

orthonormal columns and col(V̄i) ⊂ col(Eiic).
For the accelerated SPD HSS algorithm, we will compute Vi and V̄i using a

randomized algorithm [18]. (For completeness, we give the randomized algorithm

in Algorithm 5.1.) However, instead of using matrix-vector products with C
(0)
iic and

Eiic , respectively, which would be the standard approach, we will use matrix-vector

products with alternative matrices that have almost the same column spaces as C
(0)
iic

and Eiic , respectively, to reduce cost.
To see what alternative matrices we propose using, we first write the matrices

C
(0)
iic and Eiic explicitly as

C
(0)
iic =

[
S−1
i AijS

−T
j

]
j∈ic

= S−1
i Aiic diag({S−Tj }j∈ic),

Eiic =
[
(I + Bii)

−1/2Bij(I + Bjj)
−1/2

]
j∈ic

= (I + Bii)
−1/2

{[ Bi1j1
··· Bi1,jm

...
. . .

...
Bimj1

··· Bimjm

]}
j∈ic

diag({(I + Bjj)
−1/2}j∈ic)

= (I + Bii)
−1/2

[Φi1

. . .
Φim

]
Aiic diag(Φjs) diag({(I + Bjj)

−1/2}j∈ic)

where diag(Φjs) denotes the block diagonal matrix made up of all Φjs with js being
a child of any node j ∈ ic. The last equation above is from substituting (5.2) into
Biajb of its previous equation.

Instead of approximating the column spaces of C
(0)
iic (when i is a leaf node) and

Eiic (when i is a nonleaf node), we approximate the column spaces of Λiic , defined
as,

Λiic =


S−1
i Aiic i is a leaf node

(I + Bii)
−1/2

[Φi1

. . .
Φim

]
Aiic i has children i1, . . . , im

.

Block Λiic differs from C
(0)
iic and Eiic in that there is no matrix applied to the right of

Aiic . This choice of Λiic is for the efficiency of computing the corresponding matrix-
vector products in the randomized algorithm. It is theoretically possible that comput-

ing Vi and V̄i using Λiic may affect the approximation accuracy of C
(0)
iic ≈ ViV

T
i C

(0)
iic

and Eiic ≈ ViV
T
i Eiic . Since our goal is to construct a low-accuracy SPD HSS pre-

conditioner, this possible slight deterioration of the approximation accuracy may be
tolerable.

The product of Λiic and a block of random vectors involves first computing the
product of Aiic with random vectors. Thus we first compute the products,

(5.4) Y (k) = (A− diag({Aii}i∈lvl(k))) Ω, k = 1, 2, . . . , L− 1
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Algorithm 5.1 Randomized algorithm for computing a basis matrix U for H

Input: H ∈ Rn×m, rank r, over-sampling parameter p
Output: U from the rank-r approximation H ≈ UUTH with UTU = I

Step 1: Generate an m×(p+r) random matrix Ω whose entries follow the standard
normal distribution
Step 2: Compute Ψ = HΩ
Step 3: Compute the pivoted QR decomposition ΨP = QR, and set U to be the
first r columns of Q

(one for each nonroot level) where Ω ∈ RN×(r+p) is a random matrix, given that we
desire rank r approximations using an oversampling parameter p. The quantity in the
outer brackets of (5.4) is just the matrix A without its block diagonal part at each
level k. These products Y (k) can be computed efficiently using the H2 representation
of A and just neglecting the block diagonal parts during multiplication. The desired
products AiicΩic , where Ωic denotes the row subset of Ω associated with ic, can be

extracted as the row subsets of Y (k) associated with each i ∈ lvl(k), denoted by Y
(k)
i .

To complete the multiplication by Λiic , we now apply S−1
i (if i is a leaf node)

or (I + Bii)
−1/2diag({Φi1 , . . . ,Φim}) (if i is a nonleaf node) to Y

(k)
i to obtain the

product ΛiicΩic needed in step 2 of Algorithm 5.1. The product S−1
i Y

(1)
i for each leaf

node can be directly computed. The product (I + Bii)
−1/2diag({Φi1 , . . . ,Φim})Y

(k)
i

for each nonleaf node at level k needs to be recursively computed from level 1 to level
(k − 1), since Φis is recursively defined in (5.3). This recursive computation can be
unfolded into local computations at each descendant of node i from level 1 to level
(k − 1) as shown in Algorithm 5.2.

The complexity of computing each Y (k) in (5.4) is O((r+ p)N) due to the linear-
scaling of H2 matrix-vector multiplication. Since there are a logarithmic number of
levels, the overall complexity for the randomized algorithm is O(rN logN) for both
computation and storage, assuming p is a small constant. The cost of the pivoted
QR decompositions in the randomized algorithm is small because ΛiicΩic is a small
matrix of dimension |Ii| × (r+ p) for a leaf node and mr× (r+ p) for a nonleaf node.

Algorithm 5.2 Level-by-level computation of the special products

Input: {Si, Vi} at level 1, {Bii, V̄i} at levels 2, . . . , k − 1, {Bii} at level k

Output: (I + Bii)
−1/2diag({Φi1 , . . . ,Φim})Y

(k)
i for each i ∈ lvl(k)

At the leaf level
Let Ti = Y

(k)
i for each i ∈ lvl(1) be the row subset of Y (k) indexed by Ii

Compute Ti = V T
i S
−1
i Ti (in-place computation)

for l = 2, 3, . . . , k − 1 do
Let Ti = [TT

i1
, . . . , TT

im
]T ,∀i ∈ lvl(l) be the vertical concatenation of Ti1 , . . . , Tim

Compute Ti = V̄ T
i (I + Bii)

−1/2Ti
end for
Define (I + Bii)

−1/2[TT
i1
, . . . , TT

im
]T for each i ∈ lvl(k) as the output

5.2.2. Calculation of Bij. We first define some nomenclature for the blocks
in an H2 representation. At each level k, we categorize all the blocks {Aij} with
i, j ∈ lvl(k) into three types as follows. The colors for each type refer to the colors in
Figure 5.2 which illustrates the categorization.
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• Type-1 (white): j /∈ Fi.
• Type-2 (yellow): j ∈ Fi and Aij is contained in a larger low-rank block at

some upper level, i.e., par(j) ∈ Fpar(i).
• Type-3 (green): j ∈ Fi and Aij is represented in low-rank form, i.e., par(j) /∈
Fpar(i).

Type-1 blocks are either stored in dense form or consist of Type-1 and Type-3 blocks
at next the lower level. Type-2 blocks are contained in larger Type-3 blocks.

Fig. 5.2. Illustration of three types of blocks at each partition level of the matrix from Figure 5.1.
The white blocks are Type-1, the yellow blocks are Type-2, and the green blocks are Type-3. An H2

representation is made up of Type-1 blocks from the leaf level and Type-3 blocks from all levels.

Recall from (4.8) that, in the generalized SPD HSS construction algorithm, Bij

at a nonleaf level is recursively calculated using

Bij = V̄ T
i (I + Bii)

−1/2Bij(I + Bjj)
−1/2V̄j .

We now discuss how the H2 representation can be used to reduce the number of
Bij matrices that need to be calculated in HSS construction. There are three cases,
corresponding to the three types of blocks.

Case 1. If we need the HSS coefficient matrix Bij = ΦiAijΦ
T
j and the corre-

sponding Aij is a Type-3 block in the H2 representation, i.e.,

Aij = UH
2

i BH
2

ij (UH
2

j )T

(from (5.1)), then Bij can be computed as

(5.5) Bij = (ΦiU
H2

i )BH
2

ij (ΦjU
H2

j )T .

Thus, instead of recursively computing Bij , we can first compute ΦiU
H2

i for each i
and use (5.5) to immediately compute Bij , which only contains products of small
matrices. By this approach, we do not have to compute any Biajb for the descendants
ia of i and jb of j at lower levels. Any Bij in the HSS representation that corresponds
to a Type-2 block Aij in theH2 representation is no longer needed since Type-2 blocks
are enclosed in Type-3 blocks.

For each node i, ΦiU
H2

i can be recursively computed as (utilizing (2.2)),

ΦiU
H2

i = V̄ T
i (I + Bii)

−1/2

[Φi1

. . .
Φim

] UH2

i1

. . .
UH2

im

RH2

i
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= V̄ T
i (I + Bii)

−1/2

Φi1
UH2

i1

. . .
ΦimUH2

im

RH2

i ,

which involves computations of {ΦipU
H2

ip
} at level (k − 1).

Case 2. If we need the HSS coefficient matrix Bij and the corresponding Aij is
a Type-1 block not at the leaf level, then Bij must be computed by recursion, using
children blocks in the H2 representation that are either Type-1 or Type-3. If they are
Type-3, then the recursion stops (we have the case above), but if they are Type-1,
then the recursion continues unless the Type-1 block is stored in dense format (i.e.,
at the leaf level, such a Bij is directly computed).

Case 3. The case that we need the HSS coefficient matrix Bij and the corre-
sponding Aij is a Type-2 block is impossible (see the comment on Type-2 blocks in
case 1); such Bij are never needed.

Overall, at each level k of the accelerated SPD HSS construction, we only need to
construct the small subset of all Bij blocks that are associated with either Type-1 or
Type-3 blocks Aij . There are in total only O(|lvl(k)|) such blocks at level k. Finally,
we only require Bij for each pair of sibling nodes for the final HSS representation.
The computation of all such Bij is O(Nr2).

5.2.3. Summary. The complete algorithm that exploits an H2 representation
to efficiently construct an SPD HSS approximation is shown in Algorithm 5.3. Note
that only Bij corresponding to Type-3 and Type-1 blocks need to be computed. The
computation proceeds level-by-level from the leaves toward the root in order to satisfy
the data dependencies implicit in Bij , Bii, and Φi.

In the algorithm, the major computation and storage come from those related to
Y (k). Algorithm 5.3 thus has O(rN logN) computation and peak storage cost. The
constructed SPD HSS approximation has O(Nr) storage cost.

Algorithm 5.3 can be extended to construct an SPD HSS approximation with a
given approximation error threshold by adaptively adding more vectors to Ω and by
compressing ΛiicΩic with this error threshold. In this case, the approximation ranks
for ΛiicΩic could increase with the overall matrix size for many problems, leading to
more expensive computation cost.

6. Numerical experiments. The SPD HSS approximation constructed by Al-
gorithm 5.3 will be denoted as “SPDHSS.” In comparison, the regular HSS represen-
tation that does not use scaling-and-compression nor consider positive definiteness
will be referred to as “regular HSS” or, simply, “HSS” in the tables and figures below.

SPDHSS is tested using SPD kernel matrices. A kernel matrix K(X,X) =
(K(xi, xj))xi,xj∈X is defined by a kernel function K(x, y) and a set of points X. Ker-

nel matrices appear in many applications, such as Gaussian processes and Brownian
dynamics, and usually can be effectively represented in H2 form when defined in low-
dimensional spaces, e.g., two-dimensional (2D) and three-dimensional (3D) spaces.
We consider four kernel functions:

• Matérn-3/2 kernel, K(x, y) =
(
1 +
√

3 l |x− y|
)

exp
(
−
√

3 l |x− y|
)
.

• Gaussian kernel, K(x, y) = exp
(
−l |x− y|2

)
.

• Inverse multiquadric (IMQ) kernel, K(x, y) = 1/
√

1 + l |x− y|2.
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Algorithm 5.3 Accelerated SPD HSS construction with quasilinear computation

Input: HSS rank r, oversampling parameter p, an SPD H2 representation of A
Output: an SPD HSS approximation of A with {Aii}, {Bij}, {Ui}, {Ri}

compute Y (k) = (A− diag({Aii}i∈lvl(k)))Ω, k = 1, 2, . . . , L− 1
At the leaf level

compute the Cholesky decomposition Aii = SiS
T
i , ∀i ∈ lvl(1)

compute ΛiicΩic = S−1
i Y

(1)
i , ∀i ∈ lvl(1)

compute Vi via the pivoted QR decomposition of ΛiicΩic by Algorithm 5.1
compute ΦiU

H2

i = V T
i S
−1
i UH

2

i , ∀i ∈ lvl(1)
compute Bij = V T

i S
−1
i AijS

−T
j V T

j for all Type-1 i, j ∈ lvl(1)

compute Bij = (ΦiU
H2

i )BH
2

ij (ΦjU
H2

j )T for all Type-3 i, j ∈ lvl(1)
set Ui = SiVi, ∀i ∈ lvl(1)

for k = 2, 3, . . . , L− 1 do
compute (I + Bii)

±1/2 via eigen-decomposition of Bii, ∀i ∈ lvl(k)

compute ΛiicΩic = (I+Bii)
−1/2

[Φi1

. . .
Φim

]
Y

(k)
i via Algorithm 5.2, ∀i ∈ lvl(k)

compute V̄i via the pivoted QR decomposition of ΛiicΩic by Algorithm 5.1

compute ΦiU
H2

i = V̄ T
i (I + Bii)

−1/2

Φi1U
H2

i1

. . .
ΦimUH2

im

RH2

i , ∀i ∈ lvl(k)

compute Bij = V̄ T
i (I + Bii)

−1/2Bij(I + Bjj)
−1/2V̄j , for all Type-1 i, j ∈ lvl(k)

compute Bij = (ΦiU
H2

i )BH
2

ij (ΦjU
H2

j )T for all Type-3 i, j ∈ lvl(k)

set Ri = (I + Bii)
1/2V̄i, ∀i ∈ lvl(k)

end for

• Rotne–Prager–Yamakawa (RPY) kernel [27, 36],

K(x, y) =



1

a
I3 if |r| = 0

3

4|r|

(
I3 +

rrT

|r|2

)
+

3a2

2|r|3

(
1

3
I3 −

rrT

|r|2

)
if |r| > 2a

1

a

(
1− 9

32

|r|
a

)
I3 +

3

32

|r|
a

rrT

|r|2
if |r| < 2a

with r = x− y. The kernel is a 3× 3 tensor and is defined for points in 3D.
The first three kernels are commonly used in statistical models with spatial data,

such as Gaussian processes for geoscience problems [19], as well as many other numer-
ical methods that rely on radial basis functions, such as in the numerical solution of
partial differential equations [10]. In these kernels, l is a length-scale parameter that
is optimized to fit the data. The RPY kernel describes the hydrodynamic interactions
between spherical particles in a viscous fluid. In this kernel, a is the particle radius.
In practice, the parameters l and a in these kernel functions and the distribution of
the data points affect the conditioning of the resulting kernel matrices.

For all tests in this section, we consider two types of 3D point sets for X: uniform
random distributions of N points on a sphere of radius

√
N/(4π) in 3D (sphere point

set), and uniform random distributions of N points in a ball of radius 3
√

3N/(4π) in
3D (ball point set). The radii of the sphere and the ball are selected to make the
point density on the sphere and in the ball remain constant with different N .
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We use the H2Pack library [22] for general computations related to H2 and HSS
representations of kernel matrices. H2Pack can efficiently construct an H2 representa-
tion of a kernel matrix with linear-scaling computation by using a hybrid compression
technique called the proxy point method [35]. H2Pack also provides efficient regular
HSS construction for kernel matrices using the proxy point method. This regular HSS
construction [33] does not use the scaling-and-compression technique and instead ex-
ploits analytic information of a kernel function to reduce the construction cost. It
resembles recursive skeletonization [20] but works for general kernel matrices and re-
quires an additional ULV decomposition for matrix inversion. Note that the ULV
decomposition has relatively cheap computation cost compared to the corresponding
HSS construction. All timings of regular HSS and SPDHSS construction reported
below include that for ULV decomposition.

Given a kernel matrix K(X,X) with X in d-dimensional space, a 2d-ary partition
tree is constructed by recursively partitioning a box enclosing all the points X (by
bisecting each dimension) until each finest box has less than 400 points. This partition
tree is used to construct the H2 representation of the kernel matrix. The regular
HSS and SPDHSS representations use the same partition tree. The preconditioned
conjugate gradient (PCG) method is used to solve kernel matrix systems. The systems
have random right-hand side vectors with entries chosen from the uniform distribution
on [−0.5, 0.5]. The PCG relative residual norm stopping threshold is 10−4.

The test calculations are carried out on a dual Intel Xeon Gold 6226 CPU com-
puter with a total of 24 cores and 180 GB memory. One hyperthread per core is used.
All codes are implemented in C and parallelized using OpenMP.

6.1. Computational efficiency. Consider the Matérn kernel with parameter
l = 0.1. Ball and sphere point sets are generated with the number of points N
ranging from 4× 104 to 2.56× 106. Figure 6.1 plots the timings for constructing H2,
SPDHSS, and regular HSS representations, as well as timings for H2 matrix-vector
multiplication and the SPDHSS/HSS solve operation (with a ULV decomposition).
The H2 representations are constructed with relative error threshold 10−8 here and
in the results that follow. The SPDHSS/HSS approximations use fixed r = 100 and
r = 200.

Approximate linear scaling is observed in all cases. In terms of absolute cost, note
that SPDHSS construction formally requires (r + p)(L − 1) matrix-vector multipli-
cations using the H2 representation to compute Y (k) in (5.4), not to mention other
operations. For our range of N , the number of levels L ranges from 4 to 7. The
oversampling parameter p is set to 10 for all tests. Despite requiring (r + p)(L − 1)
matrix-vector multiplications, Figure 6.1 shows that the SPDHSS construction time
can be faster than r times the cost of a single H2 matrix-vector multiplication. This
is due to the use of level 3 BLAS operations when performing these multiplications,
and points to the computational efficiency of blocked matrix multiplication that can
be used in randomized algorithms.

Figure 6.1 also shows that SPDHSS construction is faster than regular HSS con-
struction with the same rank r. This is due to efficient use of the H2 representation
for SPDHSS construction as presented in this paper. Note that the H2 construction
cost is relatively very small. We also note that the cost of the SPDHSS solves is
comparable to or smaller than the cost of a H2 matrix-vector multiplication in these
examples.

Figure 6.2 plots the storage costs of the H2 representation and SPDHSS approx-
imation (after ULV decomposition). As can be shown analytically [30], an HSS ap-
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Fig. 6.1. Timings for constructing (solid lines) and applying (dashed lines) H2 representations
and HSS/SPDHSS approximations. Results are for Matérn kernel matrices with ball and sphere
point sets. Linear-scaling of the regular HSS construction is due to the fixed approximation rank
and the use of the proxy point method. Dotted reference lines show linear and quadratic scaling.

proximation using a fixed rank has linearly scaling storage cost. An SPDHSS approx-
imation has the same storage cost as the corresponding regular HSS approximation
for the same approximation rank r.
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Fig. 6.2. Storage cost of H2 representations and SPDHSS approximations of Matérn kernel
matrices with ball and sphere point sets. Dotted reference lines show linear and quadratic scaling.

To estimate the accuracy of the regular HSS and SPDHSS approximations, we
measure the accuracy of sample matrix-vector multiplications with these approxima-
tions, where we assume that the matrix-vector multiplication with the H2 represen-
tation is the exact value. Figure 6.3 plots the average relative error using a sample
of 10 matrix-vector multiplications by Gaussian random vectors. As expected in 3D
problems, with a fixed rank r, the relative errors of both the SPDHSS and regular
HSS approximations increase with the problem size. SPDHSS has slightly larger ap-
proximation errors than regular HSS. However, the regular HSS approximations in all
these examples are not SPD.
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Fig. 6.3. Average relative matrix-vector multiplication errors of regular HSS and SPDHSS
approximations. Each data point is the average relative error (in 2-norm) of matrix-vector multipli-
cations by 10 Gaussian random vectors. The reference results for matrix-vector multiplication are
computed using the H2 representation.

6.2. Preconditioning performance. We test the SPDHSS approximation as
a preconditioner and compare it with the following preconditioners.

• The block Jacobi preconditioner (BJ) is a block diagonal matrix consisting
of the diagonal blocks associated with the leaf nodes in the partition tree.

• The factorized sparse approximate inverse preconditioner (FSAI) is GTG,
where G is a sparse approximation to the inverted Cholesky factor of an SPD
matrix [23]. The nonzero pattern used for row i of G has k nonzero entries
and corresponds to the k nearest neighbors of point i for scalar kernels, or
to the k/3 nearest neighbors of point i for the RPY kernel. Constructing G
requires only selected entries of the SPD matrix, which depends on the chosen
sparsity pattern, and thus FSAI can be efficient for dense kernel matrices.

• The regular HSS approximation with a fixed rank r, but only when the ap-
proximation happens to be SPD.

6.2.1. Kernel functions with varying parameters. We consider the Matérn,
Gaussian, and IMQ kernel functions with varying parameter l. In Gaussian process
estimation, l changes in each optimization step and each l corresponds to a system
to solve involving the kernel matrix, denoted here as Kl(X,X). For all three kernel
functions, when l is close to zero, Kl(X,X) is close to low-rank; when l is sufficiently
large, Kl(X,X) is close to sparse. In practice, a diagonal shift is added, i.e., σI +
Kl(X,X), to account for noise in the Gaussian process model. Numerically, this
diagonal shift is also necessary to keep the linear system from being extremely ill-
conditioned when l is small. We set σ = 10−2 in the following tests.

Table 6.1 lists the number of PCG iterations for solves involving the three types
of kernel matrices with various parameters l, generated by a ball point set of size
3.2 × 105. For all the different types of kernels, FSAI performs very well when l is
large, corresponding to kernel matrices that are close to sparse. For smaller values of
l, the performance of FSAI deteriorates.

In comparison, SPDHSS has more consistent preconditioning performance for
this wide range of parameters, although it takes more iterations than FSAI for large
l in most cases. This consistency is an advantage of SPDHSS over FSAI, since the
parameter l changes during optimization, and it could be difficult to quantitatively
decide when to use FSAI, particularly for more complicated kernel functions.
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We also observe that SPDHSS has better performance than BJ in all the tests.
The SPDHSS preconditioner can be viewed as the combination of a BJ preconditioner
(the diagonal blocks) with some off-diagonal approximations. Finally, the computed
regular HSS preconditioner in most cases is not SPD.

Table 6.1
Number of PCG iterations for systems with diagonal-shifted kernel matrices σI + Kl(X,X)

with different kernels and parameters l. All tests use the same N = 3.2× 105 points in a ball. The
notation “−” means that PCG fails to converge within 3000 iterations; “/” means that a regular
HSS preconditioner is not SPD.

parameter l 0.0010 0.0025 0.005 0.010 0.025 0.05 0.10 0.25 0.5 1.0

Unpreconditioned 41 119 297 687 1896 - - 1684 634 210
BJ 459 1202 2504 - - - 2765 707 172 82
FSAI k = 200 2659 2623 2045 1518 960 569 266 63 18 6
FSAI k = 400 1734 1531 1111 831 511 266 108 28 10 4
SPDHSS r = 100 2 3 5 14 62 159 287 245 117 56
SPDHSS r = 200 1 2 4 5 20 58 131 171 92 50
HSS r = 100 2 3 6 / / / / / / /
HSS r = 200 2 2 3 6 / / / / / /

(a) Matérn kernel

parameter l 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1.0

Unpreconditioned 103 394 838 2498 2396 1098 695 232 150
BJ 1851 - - - - 989 487 147 85
FSAI k = 200 - - - 2718 1371 253 106 16 7
FSAI k = 400 - - - 1498 687 93 43 9 4
SPDHSS r = 100 1 3 21 577 855 563 378 118 65
SPDHSS r = 200 1 2 6 116 284 415 314 106 59
HSS r = 100 2 3 / / / / / / /
HSS r = 200 2 2 2 / / / / / /

(b) Gaussian kernel

parameter l 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50 100

Unpreconditioned 1239 2656 - - 2812 1958 1576 915 724 394 284
BJ - - - 2300 1605 529 322 195 151 97 73
FSAI k = 200 2839 1092 619 201 121 45 32 24 24 23 23
FSAI k = 400 1598 535 266 73 51 24 21 18 18 18 17
SPDHSS r = 100 53 249 328 355 291 112 74 38 28 13 10
SPDHSS r = 200 12 71 129 212 195 84 60 33 23 10 8
HSS r = 100 / / / / / / / / / / /
HSS r = 200 / / / / / / / / / / /

(c) IMQ kernel

Table 6.2 shows the time required to construct and apply (solve with) the various
preconditioners. The table also shows the time required to construct and apply (mul-
tiply by) the H2 representation. The storage requirements for the H2 representation
and for the preconditioners are also shown. The construction cost of an SPDHSS
approximation depends on the efficiency of the corresponding H2 representation, and
thus varies for different kernel functions. The application of the SPDHSS precondi-
tioners, although more expensive than for FSAI preconditioners, is relatively fast in
comparison to corresponding H2 matrix-vector multiplications.
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Table 6.2
Timings (in sec.) for constructing and applying (solves) the preconditioner and storage (in GB)

for the BJ, FSAI, and SPDHSS preconditioners. The table also includes timings for constructing
and applying (matrix-vector multiplication) the H2 representation. The matrices are from those in
Table 6.1 defined by the Matérn with l = 0.025, Gaussian with l = 0.01, and IMQ with l = 1. The
H2 representations of the three test matrices require 0.7, 1.8, and 1.2 GB of storage, respectively.

Matérn Gaussian IMQ
storage constr. apply constr. apply constr. apply

H2 representation 0.7/1.8/1.2 1.7 0.30 10.8 0.36 4.6 0.92
BJ 0.3 0.3 0.016 2.9 0.0055 0.1 0.0091
FSAI k = 200 0.7 8.6 0.0070 6.7 0.0052 7.8 0.0083
FSAI k = 400 1.4 13.1 0.013 12.3 0.0081 15.3 0.023
SPDHSS r = 100 2.2 21.1 0.046 22.5 0.041 23.6 0.043
SPDHSS r = 200 4.6 38.3 0.15 44.0 0.11 43.9 0.11

6.2.2. Kernel matrices with varying sizes. We now consider the iterative
solution of the Matérn and RPY kernel matrix systems for systems of different sizes.
For the RPY kernel, particle radii a = 0.29 and a = 0.42 are selected such that
each ball point set has corresponding volume fraction of particles around 0.1 and
0.3, respectively. These two volume fractions are representative for macromolecular
simulations of conditions within biological cells [7]. For the Matérn kernel, l = 0.25
and l = 0.01 are tested based on the previous results in Table 6.1, where FSAI
performs better than SPDHSS for l = 0.25 and vice versa for l = 0.01. No diagonal
shift is added to RPY kernel matrices while a shift of σ = 10−2 is added to Matérn
kernel matrices as before.

Table 6.3 shows PCG convergence for systems using the two kernel functions
with different point sets. As expected, iteration numbers increase with matrix sizes
for the FSAI and SPDHSS preconditioners since a fixed approximation rank r and
sparsity parameter k are used. Related to this is the increasing relative approximation
error in the SPDHSS approximation with increasing matrix size when r is fixed, as
observed earlier in Figure 6.3. As to be shown next, it is possible to obtain scalable
preconditioning performance by constructing SPDHSS preconditioners with a fixed
relative error threshold but at the sacrifice of asymptotically more expensive cost in
SPDHSS construction and solve.

6.2.3. SPDHSS with a fixed relative error threshold. To demonstrate
the preconditioning performance and computational complexity of SPDHSS with a
fixed relative error threshold, we consider the Matérn kernel with l = 0.25 which was
previously tested with fixed ranks (Table 6.3). Applying SPDHSS with two relative
error thresholds τ = 10−1 and τ = 10−2, Table 6.4 shows PCG iteration counts and
average matrix-vector multiplication errors of SPDHSS approximations for systems
with different point sets. The iteration counts are roughly constant with different-sized
problems, suggesting scalable preconditioning performance. The results in Table 6.4
show that the error of an SPDHSS approximation is well controlled by the relative
error threshold for our test problems. However, we note that an error threshold
is applied to the compression of scaled blocks in SPDHSS construction, which only
indirectly controls the overall matrix approximation error.

Figure 6.4 plots the maximum approximation ranks and SPDHSS construction
and application costs with different point sets for τ = 10−2. For these ball (sphere)
point sets, it is well known (e.g., see [20]) that an HSS approximation with a fixed rela-
tive error, whether it is regular HSS or SPDHSS, can have at least O(N2/3) (O(N1/2))
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Table 6.3
Number of PCG iterations for kernel matrices defined by different point sets.

N (×104)
ball point sets sphere point sets

4 8 16 32 64 4 8 16 32 64

Matérn l = 0.01
Unpreconditioned 134 217 397 689 1235 370 713 1252 2195 -
BJ 1209 2249 - - - 1472 2642 - - -
FSAI k = 200 762 1215 1205 1503 - 504 651 877 1340 1791
FSAI k = 400 347 693 656 849 1474 247 272 380 470 634
SPDHSS r = 100 3 4 7 14 29 4 4 7 17 34
SPDHSS r = 200 2 3 3 5 10 3 3 3 4 8

Matérn l = 0.25
Unpreconditioned 1123 1358 1542 1681 1790 549 559 566 569 570
BJ 574 568 763 704 650 169 197 184 199 197
FSAI k = 200 56 83 53 63 114 16 23 21 24 28
FSAI k = 400 26 36 22 28 46 7 9 8 10 12
SPDHSS r = 100 100 148 196 236 294 38 55 71 85 101
SPDHSS r = 200 45 76 122 172 216 11 21 36 51 71

RPY a = 0.29
Unpreconditioned 432 510 1055 1151 1653 549 707 1741 1448 1706
BJ 95 142 181 238 282 51 104 100 139 147
FSAI k = 200 89 113 137 174 222 31 35 42 50 60
FSAI k = 400 84 98 122 162 212 24 28 34 37 48
SPDHSS r = 100 40 51 62 77 99 16 22 27 28 31
SPDHSS r = 200 27 36 46 58 75 12 14 22 22 25

RPY a = 0.42
Unpreconditioned 632 762 1571 1723 2428 809 1063 2566 2132 2515
BJ 150 218 237 328 436 66 140 128 178 191
FSAI k = 200 137 165 206 266 338 38 43 52 62 77
FSAI k = 400 125 151 176 244 307 28 32 37 43 56
SPDHSS r = 100 64 79 101 121 157 23 30 35 39 45
SPDHSS r = 200 45 59 74 95 122 16 20 30 29 36

Table 6.4
Number of PCG iterations and average matrix-vector multiplication errors for kernel matrices

defined by the Matérn kernel with l = 0.25 and different point sets.

N (×104)
ball point sets sphere point sets

4 8 16 32 64 4 8 16 32 64

Iteration counts
SPDHSS τ = 10−1 85 79 90 88 89 43 43 46 50 49
SPDHSS τ = 10−2 10 10 10 13 10 7 9 12 10 10

Matvec errors
SPDHSS τ = 10−1 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
SPDHSS τ = 10−2 0.004 0.003 0.003 0.003 0.003 0.005 0.004 0.005 0.005 0.005

maximum approximation ranks and have at least O(N2) (O(N3/2)) factorization and
O(N4/3) (O(N logN)) solve cost. Our numerical results with SPDHSS are consistent
with this theoretical analysis.

Overall, although the number of PCG iterations remains roughly constant when
the problem size increases, the costs of precomputation of SPDHSS construction and
the application of SPDHSS as a preconditioner both increase superlinearly. It is thus
more practical to use a proper combination of a maximum rank threshold and a
relative error threshold for the application of SPDHSS.
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Fig. 6.4. Maximum approximation ranks and timings for construction and application (solves)
of SPDHSS with fixed relative error threshold τ = 10−2 for ball and sphere point sets. In (a), the
two dotted reference lines show O(N1/2) and O(N2/3) scaling. In (b), the four dotted reference lines
show O(N log(N)), O(N4/3), O(N3/2), and O(N2) scaling.

7. Conclusion. Fast direct solvers and rank-structured preconditioners, such as
those using the HSS representation, impose a block structure on a matrix that provides
for fast solve operations, but the rigid block structure (arising from so-called “weak
admissibility”) also results in large block ranks, especially if an accurate representation
is desired. This leads to high construction cost.

On the other hand, more general rank-structured matrix representations, such
as H2, have a flexible block structure (arising from so-called “strong admissibility”)
that allows for an accurate representation with smaller block ranks, and thus these
representations have relatively low construction cost. However, the general structure
does not admit fast solve operations.

This paper, in a way, combines these two types of rank-structured matrix rep-
resentations. The paper shows how to accelerate the construction of an SPD HSS
approximation to an SPD matrix by exploiting and only using an H2 representa-
tion of the SPD matrix that is assumed to be available, for example, in the context
of a preconditioned iterative solve. The acceleration results from (i) using fast H2

matrix-vector multiplication to compute scaled basis matrices, Vi and V̄i, needed in
constructing the HSS representation, and from (ii) using existing low-rank blocks in
the H2 representation to reduce the number of coefficient matrices Bij that need to
be computed in the HSS representation.

While we only tested SPDHSS as a preconditioner on kernel matrices, its appli-
cation to linear systems from the numerical solution of integral equations is straight-
forward. Further, although we only considered dense SPD matrices, our proposed
algorithms, Algorithm 4.1 and Algorithm 5.3, can also be applied directly to sparse
SPD matrices that are ubiquitous in the numerical solution of partial differential equa-
tions. Both methods can still guarantee the positive definiteness of the constructed
preconditioners in the sparse case, but it is worthy to study whether it is possible to
exploit matrix sparsity directly to accelerate SPD HSS construction. It is also worthy
to study whether or not the FSAI and SPDHSS preconditioners can be beneficially
combined, i.e., augmenting a sparse preconditioner with a dense one.
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